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LElTER TO THE EDITOR 

Pseudo-crystal classes: counterexamples to Lomont’s conjecture 

A C Hurley 
CSIRO, Division of Chemical Physics, PO Box 160, Clayton, Victoria, Australia 3168 

Received 16 July 1985 

Abstract. It is shown that for spaces of dimensionality greater than three there exist 
pseudo-crystal classes of groups. Each element of such a group G appears in integral 
matrix form for some coordinate system but there exists no single coordinate system in 
which all elements of G appear simultaneously in integral form. These groups violate a 
long-standing conjecture of Lomont and bear a close affinity to the phenomenon of 
non-crystallographic long-range orientational order. 

Perhaps the most elegant derivation of the 32 crystal classes in three dimensions (3D) 

is the group theoretical method of Frobenius (191 1). Here the possible matrix operators 
are established by enumerating the possible irreducible factors of the characteristic 
polynomial. Each type of matrix operator is specified by its independent invariants, 
namely the trace or character x( = 13,  *2, *l ,  0) and the determinant d (  = *l). The 
relations satisfied by group characters are then used to derive the possible orders for 
a crystallographic class. Finally using these same character relations and imposing 
the further restrictions that each class is a representation of type 1 (and, therefore, 
equivalent to a group of real matrices) the number n ( x ,  d )  of group operators belonging 
to the symbol (x, d )  is obtained. The identification of each of the 32 crystal classes is 
then a simple matter. 

Lomont (1959) discusses the 3~ classes by a variant of Frobenius’s method and, 
on the basis of these results and those in ZD and I D  spaces, makes the following general 
conjecture (Frobenius 1911, p 51). 

Lomont’s conjecture. A matrix group r is integral if r satisfies the three conditions: 
(1) r is of the Qrst kind, 
(2) r has integral character, 
(3) r is irreducible. 

One attractive feature of Frobenius’s method is that it appears, at first sight, to be 
applicable to spaces of any dimensionality. The sole complicating factor would seem 
to be the occurrence of additional invariants x2,  x3 ,  . . . , xs in the characteristic equation 
of each matrix operator. Each of these higher invariants xz, x,, . . . , xs is a generalised 
character x of the crystal class (Murnaghan 1938) so that the standard character 
relations for a finite group may still be used to fix the possible orders of the classes 
and, for a given order, the distribution of the elements amongst the types (x,, x2,  . . . , xS) 
specified by the values of the s invariants. 
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Indeed the first part of the Frobenius program, the determination of all possible 
symmetry elements from the irreducible factors of the characteristic polynomial, goes 
through without difficulty for a space of any dimensionality and yields results in 4~ 

in complete agreement with those obtained by other methods, each element being 
specified by three invariants (x, U, d )  (Hurley 1950, Brown el  a1 1978). 

However, when the second part of Frobenius’s program was worked out in detail 
for the irreducible crystal classes in 4 ~ ,  it proved impossible to reduce the number of 
solutions of the character relations below 70, even after the imposition of various ad 
hoc conditions from finite group theory, most of which were simple inferences from 
Sylow’s theorems. Derivations by other methods (Hurley 1951, Brown et al 1978) 
show that there are, in fact, just 45 irreducible classes in 4 ~ ,  leaving 25 solutions of 
the character relations unaccounted for. One might hope that a more thorough set of 
ad hoc conditions would eliminate these extraneous solutions and so restore the 
efficacity of Frobenius’s method in 4 ~ .  However this too is impossible. As we show 
below, 3 of the 25 extraneous solutions correspond to finite groups of the first kind, 
which have integral values for all invariants (x, U, d ) ,  are irreducible, but are not 
integral groups (i.e. crystal classes). Clearly these groups are counterexamples to 
Lomont’s conjecture. Furthermore, their existence precludes the possibility of a com- 
plete enumeration of the crystal classes in space of dimensionality greater than three 
by Frobenius’s method, whatever ad hoc conditions from finite group theory are 
imposed. 

The three counterexamples to Lomont’s conjecture may be generated by 4~ matrices 
a, b, c, d, f defined by the equations 

0 1 0  0 -1 1 

C =  [-: * 0 0 0  ‘1 d = I [  Jz -1 ’ -1 1 A A] 
0 - 1 0 0  -1 0 0  

-1 1 1 -1 

f=f; 2 -1 I: -1 -1 ; -11. -1 

From these matrices we may construct two groups of order 48, G4* and Gks and a 
group of order 144, GIu. Their generators, relations and elements are given by the 
following equations (with e the identity) 

G48 = (a, b, c). 

Relations = e 

b2 = e, 

c2 = a6, 

abbqc‘ ( p = O ,  1 ,..., 11; q, r = O ,  1) 

ba = a”b 

cb = bc. 7 ca = a c, 

Elements 



Relations 

Elements 

Relations 

Elements 
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(3118 = (a, b, d )  
e 

b' = e, 

d 2  = a9, da = a5d,  db  = a'bd. 

abbqd' (p=O,l, ..., 1 1 ;  q , r = O ,  1) 

ba = al'b 

G144 = (a, b, C , f  ). 
a' '= e 

b 2 =  e, ba = a"b 

c' = a6, ca = a7c, cb = bc 

f 3  = e, f a  = a4cL f b  = a3bL f c  = a'cj  

aPbqc'f' ( p = O ,  1,. .., 1 1 ;  q, r=0,1; s=O, 1,2). 
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It is straightforward to verify that the matrices a- f  satisfy the above relations and 
that each of the groups G48, Gi8 and G,, satisfy all three conditions of Lomont's 
conjecture. 

We now use reductio ad absurdum to show that none of the groups G48, G&, GI, 
is integral. 

If one of these groups is integral it must leave some 4~ lattice L invariant. 
Since L is 4~ it must contain some vector 

x=[ ,] 
x4 

with x, # 0 and x3 # 0. 
Since b is an element of all three groups, the lattice L must contain the vector 

2x1 COS e 
yl=bx+x=[ 2;] 

with 

r cos 0 sin e # 0. (3) 

(4) 

( 5 )  

Since a is an element of all three groups, L must contain the vectors 
3 

Y 2  = ay,,  Y3 = a'y1, Y4= a Y l .  

det(yl, y2 ,  y , ,  y4) = -3r4 cos' 0 sin2 e, 
Direct evaluation gives 

so that, from (3), it follows that the vectors y , ,  y2 ,  y3 ,  y4 are linearly independent. 
Using the matrix 

s = ( Y l ,  Y2, Y3, Y4) ( 6 )  
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to transform to a coordinate system with y, ,  yz, y,, y4 as basis vectors, we find that the 
transforms a',  b', c ' ,  d ' ,  f of the matrices a, b, c, d, f are given by the equations: 

-0 0 1 01 1 0  -1 0 -11 

C'= ~ - ' c S = $ ( t a n  e-cot e) 
0 0 0 - 1  

0 -1 0 
1 

+-(tan e+cot  e )  
2 8  

- 1 2 1 1  
1 

d '  = s - 'dS  = -(tan e - cot e) 
2& 

-1 0 -1 -1 
1 

+-(tan @+cot e )  
2 d  

1 -1 0 -1 

( 9 )  

1 1  0 1 -11 

-1 -1 -2  

+-(tan 4a 1 O+cot e )  1 ; -: ; i]. (10) 

-1 -2  

Since the basis vectors y, ,  y,, y,, y4 are lattice vectors, all elements of one of the matrix 
groups G4*, G&, GlU must appear in rational form for some choice of t9 satisfying 
(3). For the groups G48 = (a',  b', c') and GlU= (a ' ,  b', c',f) this implies, from equations 
(8) and ( lo) ,  that (tan 0 -cot 0 )  and ( l / a ) ( t a n  B+cot e )  are both rational for some 
value of 8, whilst for G & = ( a ,  b, d )  this implies, from equation (9) ,  that (1/&) 
x (tan f3 -cot e )  and ( l / a ) ( t a n  8 +cot e )  are both rational for some value of 8. These 
conditions reduce to the Diophantine equations 

x z +  y2 = 3t* (11) 

2 x 2 + 3 y 2 =  t2  (12) 

and 

respectively, for integers x, y and t. 
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However, a simple parity argument (Hardy and Wright 1954) shows that equations 
(11) and (12) have no integer solutions. We therefore have a contradiction and our 
original assumption of the existence of the lattice L is disproved; none of the groups 
G48, GkS and G I M  is integral. 

It is of some interest that, if complex values are admitted for the coordinates, 
equations (1 1) and (12) have obvious solutions in terms of Gaussian integers of the 
form p + i q  with p and q natural integers. These in turn allow us to express all 
generators of each of the groups G48, Gis and G,+, as Gaussian rationals. Indeed, for 
each group, the matrices of all elements appear in terms of Gaussian rationals, which 
can easily be transformed into Gaussian integers if need be. For example if, in equations 
(8) and (lo),  we choose tan 8 -cot 8 = i, tan 8+cot 8 = 8, which is consistent with 
tan 8 cot 8 = 1, we obtain 

-1 0 

0 -1 i 
-1 0 1 - 1  L-3+i -2 -1+i -3-iJ 

so that all elements of G4* = (U ' ,  b', c') and G,, = ( U ' ,  b', c',f) appear in terms of 
Gaussian rationals. Of course, the invariants (x, U, d )  remain unchanged as natural 
integers. 

Similarly, if we choose (1/2A)(tan 8 -cot 8) = ii and (1/2fi)(tan 8 +cot 8) = $i in 
equation (9), all elements of Gk8 appear as Gaussian rationals, and may easily be 
transformed to Gaussian integral form. 

Since. G4*, Gk, and GIM are the only 4~ matrix groups which violate Lomont's 
conjecture (Hurley 1951) we see that, at least for dimensionalities less than 5, the truth 
of the conjecture may be reinstated by allowing Gaussian integers as well as natural 
integers in the integral matrix group. The number of complex, geometric crystal classes 
then becomes 230, the same as the number of real space groups in 3 ~ .  A curious 
coincidence? 

In spaces of dimensionality greater than 4 it seems likely that Gaussian integers 
may not suffice, Instead we advance the 

Revised Lomont conjecture. If a matrix group r is of the first kind, has integral 
character and is irreducible, then, in a suitable coordinate system, all matrix elements 
of all operators in r appear as algebraic integers. 

We note that, for a matrix group, integral characters guarantee integral values for 
all invariants. This is because the higher invariants are integral functions of the traces 
of the powers of the matrix (Murnaghan 1938). 

The physical significance of these exceptional groups is not at present clear, although 
they show some striking affinities to the quasi-crystalline translations and rotations 
involved in non-crystallographic long-range orientational order. There too one encoun- 
ters operators (translational), each of which appears integral in some coordinate system, 
but there is no single coordinate system in which all operators are integral simul- 
taneously, as is the case for a space group (Levine and Steinhardt 1984, Schechtman 
et a1 1984). 

The author is indebted to Dr J K Mackenzie for assistance with the Diophantine 
equations (1  1) and (12). 
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